
lli, .f,

[<t_tus [-[_v41tml

K,,srr_,l L,_'hnl_h_y

NAS.k Arn_,s Research C'_,nr_,r

_[_ffett Fieht. CA. !)4()3.5 .°

havelund_ptolemy, arc. nasa. gov

Grigore Ro_u

Research [nstitute fl2r Advanced Computer Science

NASA Ames Research Center

Moffett Field, CA, 94035

grosu_ptolemy, arc. nasa. gov

Abstract

We present recent work on the development .Java PathExplorer (JP.xX), a tool for monitoring the ex-

ecution of .Java programs. JPaX can be used during program testing to gaan increased informatio_ about

program executions, and ceul potentially furthermore be applied during operation to survey safety critical

;_ 'em_. T} t ,,1 facili'at,'._ _rtt, tt_ ' ilt._tr;'mo" tat, il_rl ,,[_ !,'og';H" 'g '. t,, Otis,. 'ti," ",'ill t'.+'t_ , m.i_

events to an observer durin_ its execution, fhe observer checks the events against user provided high level

requirement specifications, for example temporal logic formulae, and against lower level error detection pro-

cedures, for example concunency related such as deadlock and data race algorithms. High level requirement

specifications together with their underlying logics are defined in the Maude rewriting logic, and then can

either be directly checked us ng the Maude rewriting engine, or be first translated to efficient data structures
and then checked in Java.

1 Introduction

Correctness of software is becorfing an increasingly important issue in many branches of our society'. People's

lives often depend on software systems even though they tend to not be aware of it. The success of most

technological experiments, inclu, ting space craft and rover technology within the space agencies, heavily depends

on the correctness of software. It is widely accepted that future space crafts will become highly autonomous.

taking decisions w.itflout communication from ground, so the required software is becoming significantly more

complex, increasing the risk of mission failures. Two common ways to approach the delicate problem of software

correctness is program synthesis, which gives a high degree of confidence but seems to work properly only" on

very restricted domain-specific problems, amt program vemfication, which is concerned with detecting a.s many"

errors as possible in existing programs. Two important aspects of program verification are te._tmg and the

use of forrr, al methods. Traditional testing techniques, however, arc very ad hoc and do not allow for formal

specification and verification of high level logical properties that a system needs to satisfy. On the other hand.

traditional formal methods such as model checking and theorem proving are usually w,rv heavy and rarely can

be used in practice successfully without considerable manual effort.

The Automated Software Engineering group at NASA Antes lt,,search Cente.r ha.s for sott,e time investigated

,My'anted f;rmal methods f_;r in_mng softw,_re c(_re',,ctn_,ss, in },,,tt_ ,_r,'as of program _vnth,,sis [1 1, 5. 19 i and

program verification [8. 9. 1.8,]', t t]. Pro_;raln svltthesis is m)t ,liscusse, l h,'r,,, bur irts worth r,,_ricmg "hat

17o_le aIl(l/'_)r ,[&t& stritCtllr_,s s'¢n.hesiz,,d from logiest[forllllLlKe. Slll'[l JL> _iIlitt' St,try' Ill&chilli'S. [_tP.'_li ;tllr_:rllatr_t t)r

itV[lil.[ilic [)rl)gr;tnt[nillff, algorithms, are _)ft_[l risen HI [)r_)gl;tnt v_,riticatr,m. W,, tl,tV,' p,'t'f_rm,'_t V;LI'i_u_ ;'_,rifilLtrioIl

i;t.s,, stlt_[h,s using fi)ttn:t[rectHfiqll,'s, ill p;trtil'ula.r nlo,[_![checking,. N, ;tll,t[vA,,-it);tl;,' el" fir s,d'rw;u,, [,'_! ['-_.,_ m,_,h,1

,.,.id_,_ ,I,,I,. _,,,[,'1 l_,.,k_r_, r,,lll_L,l_l,'_ !) L_I [I_,'-,' r,'(tll_t(l_, '_, _I[,,,._ I,,n ',r,,,.l:_:' _,'tu!.,[._l i,,_.lC [)I,q.,trt(-s

I_,' F_)lt@|[',' ,_('iilt,"t ,I,'_ ,'llrHt)HliIl,_, tl"_'iH_ ,till[!'_d'HI;tI Itli'th(lif>. F,,,-,rttl_ ,(,1[(,_, v(,il ,tH, l t> l),¢ t';w rib, IIll)'--:t iis(,_I

rI'I'hlli(tllo Ill [)t';t('ri('_' _t) '.';L]lIl:t[' -,t)t'_'*A";LI'(' _'v'%t('Hl._. Fhl' [[1('['_(' t)f II'hFI|LL_ ;111_[t(qH[>(ll'it[l()_ic g])_'clI'IF;Li'L_JH is ;ill

<,,mlfl,'.,:ir; ,,f *h,,,,r,'m pt,,vi_ : n,t m,_,h,l ch('_:king. In d_is paper, w,, pr,,s,,nr rh,' ,_r,,'n_ _tat_s ,,t'a m'w runtime

vorili(';trion _v_r(,m, ,;tlh'(l .l;tv;t P:tthExph)rvr (.lP.\.\), for [nonitorinL r, .l&v;L [)r,_r;tlll> })_,";ti'l&[yzing I,,xph)rmg)

p;trrh:ul,tr ,.x 'cution r:r;t('es. Fh(' ,_(,rwraI idea c.nsists of extr;tcting slat, ,,venr..s fr, m_ ,m oxe_uring progr;ttn, ;m(l
rh,'n ;tn;tlyzing :hem via ;t :mn,)re _)bserver process. The ol)serv(,r p_'rf(_rm.g tw,) kin(is (>f vmifi(';tri(m, namely

/,oqu: based rnort,_t,orr,r_,qand ,zrar" pat, tern anal q._'zs.

Loqu" based mor_ttor'?.n,q condsts ,)f checking formal r(_(luir('menr sp_,cific;tr, ions ,m rim executing program,

written m high. [evel logics by us_,rs of the system. Logics are currently implemen_o_l in Xlalute [2!. ;t high-

performance system supporting both rewriting logic and membership ,_guational logic. One can very naturally

and easily define new logics in Maude, such as for example temporal logics, together with their operational

semantics. Currently, .JPAX su3ports two builtin logics, future time and past time linear temporal logics. The

implementation of both these logics in Maude together with an infrastructure module that handles atomic

propositions that will most like y be part of any other more general logic, covers less than 130 lines. Therefore,

defining new logics should be _ery feasible for advanced users. The current version of Maude can do up to 3

million rewritings per second on 500Mhz processors, and its compiled version is intencled to support 1,5 million

rewritings per second. Hence, _e have decided to use Maude as the logical monitoring engine that performs the

conformance checks of events a;_ainst specifications at this early stage of JP._X.

Error pattern analysis consists of analyzing one execution trace of events using various error detection

algorithms that can identify errgr-prone programming practices, such as unhealthy locking disciplines that may

'.z.'_d t.t_ dz_:,_ races zt.: : 'z _t_",, ,.. . "1}t_' it,'q,,,t rut :,rt). al'p(,Iit_g, .:_ , r the, , 7._t,_,,it 'n is that "h, ft,,

error potentials even in the case where errors do not explicitely occur in the examined execution trace. They are

usually very fast and scalable, and often catch the problems they are designed to catch, that is, the randomness

in the choice of run does not ..;eem to imply a similar randomness in the analysis results. Two such known

algorithms focusing on concurrency errors have been implemented in JPAX, one for deadlocks and the other for

data races, but the system is designed in such a way that users can relatively easily attach new such algorithms.

The idea of using temporal logic in program testing is not new. and at our knowledge, has already been

pursued in the commercial Ter:_pora[Rover tool (TR) [4], and in the MaC tool [13]. TR allows the user to

specify future time temporal formulae as comments in programs, which are then translated into appropriate
.lava code before the compilati,)n. The MaC tool is closer in spirit to what we describe in this paper, except

that its specification language is fixed and very limited compared to the Maude language and doesn't provide
support for error pattern analy,,;is. On the other hand, tools like Visual Threads [6, 17] contain hardwired error

pattern analysis algorithms anc therefore are impossible to change or extend by a user.

Since the programming languages of the monitored program and the observer are not required to be the

same, eventually _e. s?'stem should allow to monitor programs composed of subprograms written in different

programming languages including also C++ and C. However, fi)r simplicity the system described in this paper

will focus oniy on Java. A case stud?" of 90.000 lines of C++ code for a rover controller has been carried out,

lea,ting to the detection of a de;tdlock with a minimal amount of effort. One of the mare design goals is to make

the svstem as general and generic _kspossible, allowing to handle multiple language systems and new verification
rules to be defined, oven defini_ g new specification logi('s using Nl,mdr. ()ur hope is to make .IP._,X a basis for

experiments rather than a fixed svstem.

The paper is organiz('d as f(..ll,>ws. Secti(m '2 gives an overview of .IP\X. S(,ction 3 ,tescril, s the)mderlying

h>gic formalisms for writing rv(tuir('ment sprcifi('ations, while Section t describes s,)me ,if the error (letection

algorithms for ,h,bu,,,_m.,,,,,,r ('()n('urr('nt programs. Finally... S(,(:ti(m ;3 (:ont;tins c(>n,c[llsi()tls ;tnd ,t (b,scripti()n of
fut_tr_, work.

,)
J Overview of .Jr'> X

.] [' \ _ (';llt })+' r+,_itt<[i'+[,l,,,, + _)ll>i-,Pitt12, +)[l[lli'_, tthtll+l tttqJ,_lllq",: ,ill 'tP,.',lt'a+I+_+tt"rP+_++lt +tjt£ m,,,t;tlt', ,it! o[;,;+'vP,+'v Itt(,luh!,

,tnt[,in r+rLtvv,,'or+rtt:cl:+'or,t m<,tlth' th+tt t'il's tht,m P.tJ_,,,rh,,r Pht()u_h +hq, +,t,'_l'r',<+,L +,v,,ut _PII';LIII. gl'lP ["i_11I'l' [. [_[tlp

iltstrllllli'tti',ittiott rll_)tit£[(' [)q'tt+_)rrt+s a -+;vt'ipt-(lttvCPtl ,tllr(Jtn;trp<[iltMtttttt1'ttt,ttit)tt <Jr t.hl' pt<p_,,r;ttn t_) [)(+ ,,[+s(Pr',+',[. ['h(+

[[t.'_il'111netl.tl'd pr(+,ffjritnl. '3.,'[D'[t t11II+. "¢'++'i1[++tnlt r+qeva.nt +,',++,rite+t,) rile intcract.i(m tntJ+tu[(', vchtvh t'_trther tl'itllSlnit.s

thent to the obser',;atiOtl m<J,hth,+ -['tt_+ ()l)s0t'v,,r may rlltl (Jtt ,l. ([tt['ervttt+ +:()[II[)lIl'('r+ itt which <'a+se the ev(mts are

tr;mstnittcd (>vet a socket. Hen<,'. the h'lpttt t:_) +J[:>\X c<m.';ists +)f r+'t'er(,nct+s t() two +,ntirles: the .Java. pr()gra.Ht ill

l)vtt, c()([e format to be monittJr++,i (<:f+,ated using a ._tan<Jard .LJ.va. t'Olttpi[er) &lid _[te .-Jpecitica.t:ion +cr[pt ctefining

what kin<t ,>f verification is r+'<l_t('sted. ['ho ,)utput is a (p,)ssilfly entpt, y) set of w;trnmgs printed on a special

screen.

Java]Pro gram

Compile

'++,'tJ
=ode Execute

JVM

5pecxficatnons

Observer

.....) eadloc

. 1-1 Datarace l

+as+,

Figure h Overview of ,JPAX

More specifically, the specification script defines what (if any) kind of error pattern detection algorithms

should be activated, and what if any) kind of logic based monitoring should be performed, and in that case

what the requirements are. For logic based monitoring, we have been inspired by the MaC language framework

[13] and have split the specification into an instrumentation script and a verification script. The verification

script identifies the high level re<tuirement specifications that events are to be checked against. The propositions

referred to in these specificatiors are abstract boolean flags, and do hence not refer directly to entities in the

concrete program. The instrumentation script establishes this connection between the concrete boolean program

predicates and the abstract propositions. The advantage of this layered approach, as also stated in [13], is that

the requirement sp_ification can be created without considering low level issues, and can even be created before

the construction of the program. Currently, the scripts are written in Java. Thus. high level .Java language

constructs can be used to define the boolean predicates to be observed.

The .lava byte code instrumentation is performed using the powerful .hrek Java bvte code engineering tool

[3] from Compaq..Itrek makes it possible to easily read .lava cla.ss files (byte code files), and traverse them as

abstract syntax trees while examining their contents, and insert new code. The inserted code can access the

contents of various runtime data structures, such as for example the call-time stack, and will, when eventually

executed, emit events ('arrying this extracted information to the observer.

The observer receives the e,ents and dispatches these to a set of observer rules, each rule performing a

particular analysis that hats been requested m the verificati<)n script. Generally. this modular rule based design

;tl[ows a. user to ('asily define new runtime verification pr<wedur,,s with<)ltt interfering with leg;_.cy code. Observer

rules are written ira .lava. bltt c;);l call progr:uns written in ()th('r languages, su(:h ;)-q t'<,r (,xatnple Mau(te..k[aude

plays a special role in that high level req)lirf_ment spvcifi(;tti,m._ <act I)t, written in th(' Maud(' rewriting logi<:

The Maude rewriting engiin(, ca._ then be used in two dit[',,r(,ttt ways: ;m ;t monit()rmR (,ngin+' ,luring pr,_gram

_'x(!<;tlti()n. <)r its ;). tratllsl;).tit)tt (-'ttgilte b+,f,Jre +,x,+,('t).tion+ [n th(, f+)rm+,r ca.s(,. (-_X(Wllth>tl +'v+"llts ,it'(! ,.;llbrItitt(_'d to

rhd, ".l,t+t,_,' ;_t,+,'_t';+ttt. '+',+'lii('ll lit '++tt'+l ,'_,;IIIL+ttt'++; ll+_'tll A_;IItLY, T tit,' ++qliLt[, :rt0'llt -{.', iJil;Iti,+il lit !if+' _,tlt+'t ,.I_i'

rll,' q.'< ttiC;tt i, +it i_ rt:t£t>l;tr_,,l it t_+ ,t ,tat,,-.;till1 flit+, ,q_titH,d P_,r _lt+++2,t,ltt£ +ll,,lllPiJllll._, ,t, lll(!I '", tjli'll .,'Ill is;Is'l< tie

.l;t"+;t, .licit ;t:-a',t ',+ii'b.itt the .l,tv;t pr, i_,tain re+ ,he,el< +Jl_+'nt_ ,tluriN< ,,,:, , !it ilm

.Jl+',.X +s h,xtlr ,m ,t _++iu't'i< t,nvir<mmi,nr, uam,'<l l>;tth[']S:l>h>r,'r !I'\N.+, ',vht,'h ,,ulv +++ll:<t>t t rill' lll'¢['t'-

,',mn,',+'i,m m,.luh' a.n<l th,, ,+b:.,rv+,r rlt<)dlll+ +. ['h+' :_+J+d is t_+ maR,' it p,>ssil>l,' r,+ HI,,IIII<H ++ I)t+>_t+ailtl,-; tlt other

pr()ff,r;LitHnJitff, tang_ta.g_'s, such +t;+for +'×aml:,h' C +trt, t C + +-, Iv< jlt:+t pc'< _,+'i<ii[tp_ a lan_,_tae/v '<p,'<tfic in:.,rr_lzn+'nta.ti_m

utt.luh, 5Jli<'h an experint+,nt has b.,+,n p+,tforrn+,(l in +:ollabl)t',Lri<_tl ,,vtrtl Rich W;t+,_hinu/t,m. ;t rn+'mb+,r ,)f it'u,

[_t)bq i_ics _,roltp at NASA Ames, ,m a 91).001) tilt,+ ('+-_- appli<'ati_m fl)r +'rJtllr+)llitl_ ;I. r<_v+,r l'tle-xp+,rimvnt +ust

iwr, ivate<[th+_ deadlock +ler+ecti<>ezr_ll+,, and Io<:a_o<ia <leadlo<'k _<_t_,.tiai ill t+l+>,tpf)/i+':tti+m _,bilt }la+J rl+_t hertz

_[iscovere<I through testing.
+,

3 Logic Based Monitoring

Logic base<t monitoring consist., of checking execution events against a user-provided re_luirement specification

written in some logic, typically ++nassertion logic with states + models+ or a temporal logic with traces as models.

.IPAX allows the user to defin(such new logics in a flexible manner using the Maude algebraic specification

language. Maude [2] is a modularized specification and verification system that very efficiently implements

rewriting logic. A Maude module consists of operator declarations, and equations relating terms over the

operators and universally quantified variables. Modules can be composed. It is relatively widely accepted that

rewriting logic acts like a universal logic, in the sense that other Iogics, or more precisely their syntax and

operational semantics, can be implemented in rewriting logic. JPAX currently provides linear temporal logics.

both future time and past time, as builtin logics. Notice that multiple logics can be used in parallel, so each

property can be expressed in its most suitable language. Since the Maude implementations of the current logics

are quite compact, we include taem below. The Maude notation will be introduced "'on the fly" as we give the

+'X "rtp!'._S.

3.1 Propositional Calculus

t!,'e begin with the following mo tule for propositional calculus, which is heavily used in .JP.-tX, since most logics

are based on it. It implements an efficient procedure due to Hsiang [12! to decide validity of propositions:

fmod PROP-CALC is sx FORMULA ,

ee* Co_sgr_c_ors ee*

op _/_ : Formula Formula -> Formula _assoc ¢o_] .

op +* : Formula Formula -> Formula [assoc comas] •

YaPs I Y Z : Formula . _tiat" AS" _omS_a_e* .

eq _r'ue /\ X : I . sq false /\ I = false .

eq false _+ I • I . sq I ++ I • false

eqXl\X+X.

eq I /\ (¥ ÷÷ Z) = (l 1\ T) ++ :l /\ Z) .

+_+ ,

*** Derived operators ill

op _\I_ : Formula Formula -> Formula [asso¢]

op !_ : Formula -> Formula .

op _->_ : Formula Formula -> Formula .

Op _<->_ : gormula Forlula -> Formula .

eq I \/ Y = (I /\ Y) ÷+ I ++ _ .

sq ! % : true ** I .

Iq I -> Y - grue ++ I ++ [I /\ Y) .

eq Z <-> Y + _rue *+ _ ++ Y

ice Sems_iss

sq (X /\ Y){As*} = lIAs*} /\ _(As.}

tq (l ÷+ Y)(ls-} = I(As.} ++ T(As-}
endfl

The module FORMULA,which !s extended (imported), defines the inff_k_tructure for ,lit the user-defined logics.

This will be further described in subsequent sections. For now it suffices to say that it includes some designated

basic sorts (or types) such as Formula for syntactic formulae; Formulas for formula data structures needed
when more information than the formula itself should be kept for the next transition as in the case of past
time LTL: Atom for atoms, or state variables, which in the state denote a boolean value: Atom.qtate for such

a.ssignments of boolean values t,) atoms, and AtomState* for such assignments together with linal assignments.

i.t,., those that are followed by the end of a trace, requiring at special evaiuation a.s des('ribed in the sections on

f, tt_ire time and patst tittle LTL (our si,mantics for the till[(,if tht' +,x+;(:ttrkm trace is that ,)f at C(+llltililltJUS process

that <[oesn't chalige the state). The prop<)sith)ns that hold in it <:_rtaiii t)rograin state air+.' _,Pner;tred froln the

,'xectttilig instrlitnente_t program. Perhaps the rnost imp<Jrt;tnt ,JlJ_Prator pr<+vi,Dd by the in,Mule FOA.qULA is an

,qJt,r;tthJi'l _{ .} :gormulaOS Al:omStar.e -> gormulaDS which Ilt.)ll;ttt's tit+' f_ittttiiJ;I. (l_tt,t :_tttittltr+r wilt'it ;ill !abstract_

-qt,tt_.' chatil_9. _ ¢.i<'ctlrs ,[tiririg the e:<i,(;tltiotl of ttie [)r<lgr;i.ln. N_)ti('_, til,tt i'hl> IllJ+i+l.tt! +)[),.t';tri(itl ;t,:rs like ;t tllor[ihislll

t'_,t l.,q.rqr.,tt,t_ ;q_ :ll_l_ -._+t'c n" t.,,l_,,:-,IrLt,tl;d ,;,j, i_LIn:.,tr I,;t>i,',qiv ,,,.;d_t,tt_"-, i.+q.,:-,irt,,n._ izl tit,' :.,',v .t.tt_, irh_,

];l:_r :..v,, lim,..,_ [!1+' _t.._,r _:_tr,',' r,,_.',;t_,II_[,tlJ _h,,-.' rt[.,_ ,in, i ,,i.'r;tln,,ti>.,L-, tn qt,' tn,.!uh',d._'.<'.

()I)l'l;ItI,[_ .t:'r' tllrI'r,illill'II ,tl'_,'! t If+')p ,lllIl ops IWID'[I [II,'1"I + [if,ill ,HI,' IJI)_'r;Litli + i._ [[l[l'ilqllD'I'IIi *;vtllh<JlS.

t)t,,.r;h_r,,t". ,;_t: .' ,_tt,,_L .,,.rrt-si,,tt,+.., tn -.;_tu,_.t+,I,t;u.ker.-,,-,_.ch :t:-_ A._>,l(l;t|l_.itv ,tll(t _'I_IHHIIIP;LrI\'itv ['lliv+'r'._ally

([_,ill_'i_iq'_l V;IL'_,tI_Iq'S _i>l'<i i[I "(_ [;LI;iHI_ ;l.['t'itlr['I)i_IL('_'I[,t[rt'r r_t_, v,ir &it+_ '.,':i.r3 -;vrT1_:,_[>. FitlaLlv. ,'<t,_ati-itsar,

inrr,,,t,t,,,,t .,fr,.r 'h,' eq .;ml,,,l ['tt,' g,,,,iti,:tti,>,_ -_h,,w_ rh,, t-t,.xti,i,, rt_i.',:-ti:< m,ta_i,m .f M;ut<t,'. usin_ ,m,h,r_,'or,_s

rt_ ._tar¢ f_,r ,i.r_.ilr_:t+,z!.t.-,.whirh alt,,ws ,is u> ,I,lin+, mtw svnta× ,ff .t logic' irl ,:tie rll<_st tlaillrat[wa.v.

3.2 Future Time LTL

The first m,mit,_ring logic that ,re pr+,sent, and which is built on propositiotm'l logic, is a variant ,)f Future Time

LTL !15]. Future Time LTL is t Iogi<: with -x_,cution traces as mo,tds, which makes it convenient for program

monitoring. LTL provides oper m)rs such as _.k" +'always .\'), o.\" ieventually X). o.\" inext .\'/. and .\" u I' (X

until t"). and r.heir compositu3n with standard propositional operators. Usually in formal methods Iiterature.

concerned with subjects such ;ts model checking and theorem proving, LI'L models are infinite traces. [n a

testing context, however. _race:+ are finite: sooner or later, the monitored program will be stopped and so its

execution trace. Hence the operational semantics has to reflect this. Future time LTL can be implemented

efficiently more easily than we nitially thought on top of propositional calculus:

ftmod FT-LTL is ex PROP-CALC .

**e Syntax **,*

op []_ : Formula -> Formula .

op <>_ : Formula -> Formula .

op o_ : Formula -> Formula .

op _U_ : Formula Formula -> Forlula .

vats K ? : F_rmula . _ar As : %tomState .

+q [3 x)(l,} - ([3 I) iX X(As) .
oq (<> X)(Ao} - (<> X) V Z(As} .
eq (o X){Xs> = X .
eq (I U T){ls} - Y{l_} \/ (l{ls} /\ (l U ¥))

• q ([] I}(A_ *} - l(A_ *> •

oq (<> I){ls -} - I{ll ,} .

aq (o I){la ,} - I{Ii ,} .

• q (l O _}{As ,} = Y{As *} .

e,,ifm

The four LTL operators are adted to those of the propositional calculus using the symbols: []_ (always), <>_

(eventually), o_ (next), and _t/_ (until). The operational semantics of these operators is based on a formula

transformation idea, and is defi_md by S rules, divided into two groups, all refining the operator _{_}:FormulaDS

A_:omState -> FormulaDS that comes from the FOR_,rL_ module. Note that in the future time LTL case the

formulae themselves are used a_ data structures (Foz'_u:ta is a subsort of FormulaD-q). This operator defines how

a formula is transformed by" the occurrence of a state change (a new state), and evaluated on the propositional

leaves. The intuition behind the _{_} operator can be elaborated as follows. Assume a formulae x we want to

hold on an execution trace of which the first state is as. Then the equation X{as} = x', where x' is a formula

resulting from applying the _{_} operator to x (and As), carries the following intuition: "in order for X to hold

on the rest of the trace, given that the first state in the trace is As. then X" must hold on the trace following

As". The first set of rules descr.bes this semantics assuming that the state as is not the last state in the trace,

while the last four rules apply when the state As is the last in the trace. The term Is • represents a state that

is the last in the trace, and reflects the intuition that the fintte trace can be regarded as an infimte trace where

the last state of the, finite trace is repeated infinitely. The two rules for each operator implement the following

simple equivalences:

.s _ end @ ,o iff ._{.s*} = true.

wher_ .._ - t is 0. trace formed b: 0. state s followed by a nonempty tI'a('_ + t. a.nd s - ett+l is the trace consisting

of .s followed bv the end of tra<> {the last state in the finite trace)..ks an example. <'onsid_yr the formula [] (X

-> <>Y) and a trace where t.he t-rst state As makes x true but 'f false. [n _his +:;me [3 (X -> <>Y){ls} = [] (X ->

<>Y) A <>',g (modulo proposition;d calculus rewriting). This retle<:ts the fact that after the state change. <>_ now

h;ts r,) be true on the remaining trace, in addition to the original ,zl,vaqs fi_rrnula. A proof of correctness of this

:tlg_nirhnt is givmt in [10]. D+,spite its ,>v+,rall exponential complexity, this ;tlgorirhnt tends to be q_tite acceptable

ill pt:t<'tic;t['qtltati<ms. We Cl;,nll<]n't notic:_! ;ttly sensibh, _[i[f+!r+'nc_! in global c_mcr,te ,,xperinl_!nts with .IP._,X

h,r.w,,et_ this simple 8 rtth, alg(;,rtthllt ;t/t+l ;tI_ ;tllt_m;tta-b;tseli ,_tt+' ,h'v,'h)p,'<l bv Dintirr;t Giannakol)<mtou, that

imi>h'nt,.nrs ir_ [. tl)l) [htt's ,_f .[;t_;t c<nh' ;t [3m'hi /tutotn;tt;t in:-,lfir_.+[;tlg,)tithin ;ul;tpt,,_[t_ [init+! trat<'e LTL _'see

S_tbsl'cti, m 3. i)

I !l .i littit,- :t'.tc,' ,4'HL,tttl+w +, l<+r (.l'[+ It:+,,'_t l'+n" +:'t'r+'m4t.tttt +[L,,ttttL>tIH_ ih|:-,, h,J'..,,,*v_,r _tt+_' chAt;it !t't't_tI<'>; P+h,tt

ttt,t', ,,'+'tit _ttltl,tt;tt;l.[. \t Ph(' ,'IL<I ,)I' I'_L|' _'x('++l|Pl_Jtt rr;t<{,. '.'+,+++,'it tit,. ,dr--J,rvt,_[+)l,_!+;llt[tiH'tlllllAtq"+.+. _hq' +)lJ.s(,t+vl,r

_l Lp -> <>q+ If ,,;uh p ,.v;t+_I+,J+h+w+,c[P),,. +it+t,,;,._r ,air q ,[ILI'HI_ the' :ttl,ttLt*+l'++qt ,'X+'<ZHti_dt, thq,u..,r _t>itt_, t'xhPnt

,)n,. ,_,ithl ,+iv rh,Lt rh,, t'_+rntttla w;L_ -+;LtiSti_'_l:+_Irhqm_,h ,m,' qt,,,thl ++,' a,.v;tr,, rh,tt thi> is tt_J,_,t d+,tintr+, +m..swer

h+,c;vz++, thr t+<_rmutacoltld h,v+,'+,b+,+m v+,rv w+Pll viola.te_[ili r[t_, t'ItrKtre, +f rtw pt'i)_r;t[n herini-+ b+,rn '.+t_Jpp4Pd. [f

p ,.va:-+ trill, +t[t,l :r. '.a:;L'-+ mJr. (ol[<),v+,([by <+.q. t.[t+:,n _)l+u+, ct)ut<[-_;+.v r.h;tr r[t+P f<n'tmtl;t w;t..".; viol;ttlPd. [)lit it Inay have

b,,,,tt '+,'r'+ w,*It +;+_i+ti,,<tit"_tt. pt,')grn.n! ti;l.<t +)+Peltle['t, t+() +'+>tlritttl._' it:.,OXI'(tll'i<)[l. Fi1rth,'rmore+ ev+'ry p could ha+ve

b+'ru t'_Jlh)w+.l It, + :_+q during tie ext,cuth)n, ,)ntv to b_-P,,'it>l+Lr,_',itLr the, t;ust p. in which c_+.+ we would likely

,xp,<:t th_ pr,)gr;mt to hv corr+,,:t if we terminated it by f_>rc_,. Ther+' ._r,_ ,)f <:o,tr._e LTL properties tha.t give r.he
lts+,r ;+bsolut+P ,'onfidence durin_i the monitoring. For example. ;t viokttion d_'a,_af+,tv property reflects a clear

rnisbeh;_vi<)r of the monitored program.

Tlw+ lesson that we learned from experiments with LTL monttoring is twofold. First.. we [earned that:, unlike

in rood+el cherking or r,heorern proving, LTL formulae and _,speciaJly their violatit)n or satisfaction must be

viewed with extra information such as for example statistics of how weU a formula has 'performed" along

t:he execut:ion trace. Second, we developed a belief that: LTL may sot be the most: appropriate formalism for

logic based monitoring; other more specific logics, such as real time LTL, interval logics, past time LTL, or

even undiscovered ones, could be of greater interest _han pure LTL. In the next subsection we describe an

implementation of past time LTL in Maude, a perhaps more natural logic for runtime monitoring.

3.3 Past Time LTL

Pas_ time LTL is useful for especially safety properties. These properties are very suitable for logic based

monitoring because they only refer to the past, and hence their value is always either true or false in any state

along the trace, and never to-be-determined as in future time LTL. The implementation of past time LTL is,

F +x, u,' _. p:;:in ,:y :di_.hr!.+ +: .,_: t('dirm_: that th.r ',)o +w,I.w,,nr'tr: +t-_,+f futur '_ time [TL r+ i_" _'SObuilt

on top of propositional calculus, by" adding the usual two past time operators, "_ for previous anti _S_ Ior since,

and then appropriate data structures and semantics. The implementation appears similar to the one used in

[131 (according to private comraunication), which also uses a version of past time logic. We here present the

past time logic module as is, ard then give a step-wise explanation.

fmod PT-LTL is ez PROP-CALC

op _ : Formula -> Formula .

op __ : Formula Formula -> Formula .

*** _emantic Da_a s_ructu_s *e*

op p_Ltl Formula -> For_nulaDS .

op atom Atom 8ool -> FormulaDS .

op prey Formul_DS Bool -> Formul_DS .

op _m4 Formul_DS Formul_D$ 8ooi -> FormulaD$.

op _or Formul_DS Formul_DS 8ool -> FormulaDS .

op since Formul_DS FormulaD$ 8ool -> FormulaD$.

v&rs X Y Formula .

_a_s D Dx Dy : FormulaDS •

_ars D' Dz' Dy' : FormulaDS .

_ar B : Bool

_ar A : A_om ,

_ar As 4tom$_ata

aq [atom(A,S)l - S

sq [pre_(D.B)] • B

eq [since(Dx.Dy.B)] - B

*q [amd(Ox,Dy,B)] - B

eq [xor(Ox,_y.8)] - B .

eq ptLtl(tr,ae){As} = true .

eq ptLtl(lalse)(Al_ • fal_e .

eq ptLtl(l){la} _ atom(A, (l{ls} "_ trne)) ,

eq ptLtl(- X){As} = false +

ceq ptLtl(I S Y)(As} - sinc*(Dx.Oy.[Oy])

if Dz := ptL_l(l)(As}

/\ a7 := ptL_l(Y){la> .

c*q ptLtl(l /\ Y){As} = emd(Dx,Dy,[Dx] and [Dy])

if Dx := ptLtl(X)_Aa}

/X Dy :- ptL_I(Y){Aa} .

ceq ptLtl(X ++ Y){Aa} = xor(Dx.Dy.[Dx] zor [Dy])

if Dx := ptL_l(X){Aa}

/\ Dy :- ptLtl(Y){As}

*** Semantics ***

eq atom(A,_){_a_ • a_om(A, (l{Aa} == true)) .

eq prev(D.3){As} = prev(D{As}.[D])

ceq stnceCDz,Dy,B)(As} - since(Dx',Dy',

COy'] or S _ad _Oz])

if Oz' :- Ox<Xs}

/\ Dy' := Oy(Aa}

ceq &nd(Dz,Oy,B)(As} • &nd(Dx',Oy',COx'j a_d COy'l_

_f Oz' := Dx{la}

/\ Dy' = Dy{As} •

ceq zor(Dz,Dy,B){ls} - xor(Dx',Oy',CDx'l zor [Dy'])

tf Dx' - Ox{ls_

/\ Dy' - Oy{As_

andfm

T}w fttt_itll_P _r+t intr+Jdt|ces th,' -+yttt_+x tjf the [()g{c, t,,h+P pv'e+non+'+ _d)t'r;+.t+)r an<l th.r .++nre _:,p+,rat_Jr "the rl+:xc

tW<J -+('or.it>n.'-; t)f [h+! ItI(J(hl[(+ [ntr)_ht('t? t.he .s(Pttlant.i('+ d+l,t,I, strlt<'tlir+, [wt'th'<[('()r [)+U'+t. tittle; LTL {ornluI+l.(L ;lnd its

"+(P[[I+ItLt{_'S. Thr tl;+.t._l. -;tructure is rcpr+'s+mtrd l)v tlw sort FormulaDS. inrr¢)_hl,:+.I izl rile+ FORMULA mo,l,de, and

is [t,',',h'_[tt) t','l+r+,s,'zlr. ;+ t'ol'ti|tt it ,t_ttlng +++xe<_ttion. This is iil (()ixr[-it..-,r r() t°lltltI'l ` Pint+' [+[+L, wht,r,' ;_ f_Jrmula

++'Ill+ ;+4'HIL+<I tt _['ii + .tlt_ .L Fl;ttl+_'q,ltlt+L[I<)ll _ ;LII+",_'_ It+ + _l',£tt' tl++lll:+,tPl_)It 7'.A._ '+)f'rI+r+rllp'<l It+ ':+lll-b+IHll[t:" t.ll_' l'+)ttttlllJ.

ttll_, I r;,".; P',,ItttqiLL th,tt It,t,I I,, ll,,i(l r)|t [hi' r+._l .Jr ell l' .Pl';t('+' 1[I {++i.'..,[11|IIi' I.1"(. +}ill. ', u!II'.i,tI[_ + iIq+,"--+ I+ip[.I.[)[)1',

[tt>l,';t_t. t's+t + ,';u It P,+rtttilt,i..t "q),', ;tl rt'e,'-tik,, <L+r;t _I'FII(PIII ++' it'-.; Jtltl()({ttl ,'<[Wht, !t k+'e+r-, "LtC!';. fl" rh+, [.... d,';m yah:,

t_(' +dl .ttld'_atnIiLu' ,ft rh+ + f(Jtrtull t in the' [)l_+Vl(JlL'-+ ",EI.i+_ + [+'hq'S(' v:t_llCS tt'P tt>i'<_ It(, <'<Jr t+', ri'., + ,.'.;l[iEtrt' r+tq' v:t_ttq, +)t

the ,,nrtr+, f(,tnt_tl+t ill rh+, +t_,xt '-.Pittl.. ['lit' ,qwl+:trt++n p¢Lcl, int_t,tlt+t_+s/+'r+';+t+"-; tlt+' +lal;t >rrur'+_tt'r ' t'+'[)t'c>.t'i'tttnL_ ;L

f()rtwda., l'h,' c{msrrltcr(,r:-, ++f tL:t+, tvp+, Formul.a0S , +,rrpspo[td r() the ,liff+,rt'nt kmd_ ,)I[past rl[tlt, [.['[+ _)[)l+raror;+;:

it:ore If<)r ;tt(,mtc fJropt).sil:i<,nsi, ind. _:or, pre+" 0.rid ..+,.trice Hen<'+'. for exanlpbL d+z++ for;nula - ,I +pr++vzo+,.,_ .It f<_r

_<)tnt' ;Lt't)ttti([}[o[J+JsititJn A is t+p[)r++se[tt+?(l I)y prev(atomCA, true) , false) +tl rht, t,x;t.tl:tp[e ,';Lse thml.t A is Irr+te ill the

cljrr+ult sl';i.l_(!+ bliP+ W;LS faJst_ in tt)_ pr{-_ViOliS st;l.te. Hen,> die si'c()n{t b,J<Jte,m _L[gl|lIlP[|t ['eDrPsents the current

v;due of the formula, anti is r+'tttrned by the+ [_] _)pern.tion. The pt:Lt;1 o[)erathm, that creates the initial data

structttres fr{)[It formulae is <Ieti:wd thr(mgh ++quatiotl.s r+hatals,+ <Iefine the _Jper;_ti<)n -t-} :FormulaDS htomS_a_e

-> FormulaDS <)n the initial atorfic _tate. Hence. this defines how the <late structure of ,+. formulo, is initialized.

Note that this ,_peration now is applied to the data structure of a formula. Tit(_ +equations %r the three binar;"

operators (since. an4 and =or) ,,+re defined using conditional +_quati(ms' ceq). ('onditi(ms aP provided after the

++f kewvord and introduce new variables used in the equations.

3.4 Efficient Observer Generation

Logic-based monitoring can add overhead to the normal execution of programs. Because of the high complexity

of validity in many logics, it is very easy to design and implement inefficient algorithms. We deliberately decided

that. at this early stage of .JPA.'(, it is more important to concentrate our efforts on finding and experimenting

with more expressive and natural logics for monitoring, rather than implementing very efficient algorithms for

particular logics which may soon turn out not to be the most appropriate ones. However. since LTL seems to

be a good candidate logic, we started to investigate efficient runtime formula verification algori_ms for both

future time and past time LTL. More precisely, we are looking for algorithms that generate efficient observer.s

_" _ (_ ' f " _ _ : _ + _ { ' i q + q I (" ! " _ t) " _ } + ') r " t I t _ L _ _ F + T ' + Y" (' ' : } _ ' " + J [_ < " _ C i { ' + l P ' J _ f r" ' " _ I l _ ' _ { ' L ' f] : t r; , ' 'e('tt+'(! (.'. ++.... iifiC '

synchronously with the observed program, returning an appropriate message when the formula is violated.

After experimenting with ru atime verification algorithms for LTL [10, 16, 11], each with its advantages and

drawbacks, we realized that in order for one to properly compare these, one needs to first understand and

establish criteria for "good" runtime verification algorithms. Consider a fixed logic. The following is a list of

priorities that currently influen(e the choice of runtime algorithms in .IPAX :

Forwards Design. Algorithm., that visit the execution traces backwards involve storing the trace and cannot

throw exceptions or guide the program when a formula is violated.

Runtime Efficiency. An algorithm that is exponential in the size of the trace is unusable, while an algorithm

that is exponential in the size of formula is usable but better be avoided.

Initialization. The time requi_ed to generate code or data structures from formulae cannot be ignored, but it

is considered less important than the previous criteria.

A _rivial rewriting algorithm fo: future time LTL that blindly implements the semantics is immediate (see also

[10}), but it is exponential in the. size of the trace, so it is impractical. The simple and elegant procedure shown

m Subsection a.2 and proved coerect in [10] is worst-case exponential only in the size of the fl,rmula but linear

m the size of the trace. We foun,l it quite good in practice so far and the fact that it can be implemented in only

a few lines of .Maude ('ode rnake_ it a very good choice at this incipient stage of .JP.\X. Dvnami(: programming

algorithms generated from fittme time LTL formulae [16] run in urne O(nm), whero ,t is the size of the trace

anti m is the size of the formuh,. Unfortunately. these algorithms visit the execution trace backwards so .'+hey

fail t() satisfy the first (:riterion. Fortunately. the same idea applies to p_kst time LTL and. bv dualization, yields

forwards algorithms of the sam,, complexity Therefl)re. past time LTL is a very tncely computal)le logic for

m<mJtorJn_. Besides that, the n _ruraJness with _vhJrh one, expr_,.ss+,s sa.f+,tv r_.+quJr+,men_s Jn it makes us b+-!ieve

th;tt it is ;t b+,tter ['h<)ice than flJture time LTL.

l-[,,w+.v,,r, w_, m,xt v,,rv briel-.y proSellt sl)trte I'OttcI'pts th:tt I,'atl _,,,t t'lltllr+, rim,, t]/lirt,-tr;t<',, L['L formula-

+h_'ckin_ ;tli,_ritlun t.hitt is tilt' b_ st ,)he ,Jr which we are ;tW;tlO _;tti>f'¢tng rh,, +:rlt_!ti/t ;th,_v+. [r visits rtl,' ,'x,'('tltion

tl'a(',' f<)rw;u<ls ;t[l_I its w+)rsr-,';ts+, rllnt'im+! ,',)mph'xity is ()(H/,:,. wh,.r,' ,, is th+, h'ng, rh ,)f tit,' tr;u'+' ;tll(l k is _][l(+

<(II qt

_*+,' Pit"3 Lttt[')'111<(' +_l,rlt+' <I;L ;t +_Pt_l([;lll'm_ 'll,t_ + '"+''it +H' [t''l'(ti''t [') ''IH'_Ulq' 't P'qd'tIlttl't. [nt,ltr+'.'+'l_,. +t +_,'_,'z+'"pl

+'r'+Llt.';+tz+.'_'Z t:,'+' t-, ,[l)ttt;tt", + tr('+, ,vh+.r,' Phi' tt(.h,n ,tr,' ,Lt(JZIIW [)['+q)t<'-,ti+lt)It: ", whih, th,, l('x,,+':-, ,u'(' -,tn.t(,s ,)r Prltrh

vaht(`_, F'<)r -;tfll[J+it'it'V tfl writ}if2;, ..',,c, mnkt' rt>(' ()t' .t ('/.Java-lib' ,)p't:u(,t _'_ _ h+tvtn_ rh,, tvpi('al ttlt.uir.it)tt:

d..'t t t, tn(';ttt.'_ "if i_. th('tt tt "::";+' t.," M<)r,' iJt,'<tsetv. If D = {a../L+'l i.', ;). -_+,t ,)f 'itl()ntt(' [)r()p()sitt()[i:-;" ;tn<[

.b' = It.2.31 ts ;L._(,r _)t" '-_rah,_,". _h+,n ,L'{h.'t 2! : t ,tn(_,t:'(,'.':2 : false} : ,"true : (6'3 : lj) _u')';tll w+'ll-((>rnt+,I

,iP'.'.>"_-binarv tr;tnsiti(m rr+,+,s. W(, rwxt. _,ive ,t c,)mpa(:t for}hal (l(,finititm which (;m be' .._kipp+,<l by):he itnpatient

r,',ad+,r. Let BooJ b,. t,h.,, .;_t I true, false I ,z'.)d l+,r, _,+ ,,:o,,).,.;i+b'r t;v.,;, _.(>rrs Prop and State _:))at .st,w)'_)r pr+.)p_>.'_Jtions

a.n<[_t,ltes. resp,_ctiv+qy.

Definition t Giv_-!n sets P : Prop and S : State, respectively+ then ,). (P'.'S)-binary transition tree (or

simply (P'.'5;=BTT or even B'I'T : is ;J. r,et'm (if _ort BTT of the <)rder-sorte<l free algebra TE_P. H tj Bool) over

a signature V consisting ()f the s,>rts Prop. State ,rod BTT with State a subsort of BTT, and the operation I

,?_ : _) : Prop x BTT x BTT --, 13TT [f S is empty then (P'.'_)-BTT's are called P-binary decision trees (or

simply P-BDT's or BDT's). •

[f size of a BTT becomes an important issue, than one can change this definition to take advantage of

repetitions of subtrees, thus obt_fining directed acyclic graphs instead of trees, like in the case of binary decision

diagrams (see for example [t]). However, the size of BTT's doesn't seem to be important yet, in the sense that

it doesn't affect any of the three criteria above.

Definition 2 A BTT finite state machine (or simply BTT FS_I) consists of sets P and S, together with

a total function next that maps each element in S into a (P'?S)-BTT. A BTT finite trace FSM is a BTT

FSM together with a total fun(lion end that maps each element in S" into a P-BDT. •

+{'he function enu decide._ .. _lvLdL't Lt :_Ldtt_ ia _uccptiug ut not w,,cIt a t,,to_ ett_ts LherP. ,h_ ,_ot,Al _,t _cc. ptc_,

"'execution" trace should be next defined but space doesn't allow us to go into more formal aspects. We only show

how the LTL formula _(a --* <>b} can be encoded as a BTT finite trace FSM: in this case P = {a, b}, S - {l, 2},

next(l> = a?{b?l : 2) : 1, end(i) = a?(b?true : false) : true. and next(2) = b?l : 2. endf2) = b?true : false. The

intuition for this data structure .s as follows. If the monitored program, say _, is in a state which is not the end

of the observed trace, then: if tar observer is in state 1 then evaluate the atomic proposition a in the current

state of P and if this is true the:_ evaluate b and if this is false then change the state of the observer to 2: if the

observer is in state 2 then evalu.tte only b and if this is true thett change the observer state to 1. If one decides

to stop the monitoring of P, th(m the end BDT are evaluated similarly'. Notice that false is returned when an

a occurred in the execution trace which was not followed by a b. The reader may have already noticed that we

payed special attention to the e,aluation of atomic propositions: they are evaluated only when needed. This is

because the evaluation process can be often long; for example, an atomic proposition can test whether an array

is sorted.

We have designed and implemented in Maude (in less than 200 lines of code) a relatively easy and elegant

procedure that gePrerates an oFtimal BTT finite trace FSM from any LTL formula. Despite its worst-case

exponential complexity, it is quite fast on typical fornmlae and it never needed more than 3() seconds (on a

400MHz Iaptop} to generate an optimal data structure: it needed more than 1 second only on hand-crafted

artificial formulae. This initialization time is spent only once. at the beginning of the monitoring. The following

at+' a few examples of optimal BTT finite tra('e finite state machines generated bv our current implementation:

F+)rtmda I State

_oa J!

o([3avc_a)] l

endnext

]. ,(.)true : false

1. tr_

CI(a --+ oh)] [_(.'(b.'t 2) : l a.'it/'true " false} " true

l2 671 ' "2 /,.'true false

,, H (b gt ,') + t
i

H,'true

r+ 'true

(<+.'1 - (I_.'2 • falsej_

(//'2 false)I ')

,'.)true : false

,'.'true false

I _l'If, tl'll tll llllX+lix llI)t,tlH)ll

l>+Itti, ,if+it', lh,, !', rttt tl + __ > ,+ t, vttd+irrql tt aml ,,_d'+ it ,++t> l'+i[.++ tn 'Ph,' la.'+,t ,,l):-.,'r'.<',l ..+i-:tr<,,,I" ."it,' +tu,tur,,i,,+i

I)t'_,,_.'t;tttt ['}t,' _ _ + t " t [I _ t _ + _]+ r_++ ' / I _+ '' f l+J t > 'tl;v:tV++ t.l'II+ + irl li[tlrt, rl:U +' [.[[. ,in, l ,_ur ,q,rttn;,l _1,ttt,t.il<,t +)i,_,.i'_1 __I+LP..

4 Error Pattern Analysis

[.,:%i<: based a.[talv+,is ,)f ++x_,cut on rra.c,.,s c,m t++:.,.,'+Pal,h)maht .+pecii"h: high [et.'el +,fro,t+< bltt it+ itnpl6's human

mt,,rv+,nthm m designing the ap)li(:ation requirements <)r/and r+heir underlying h)gics. However. many errors ;Lre

tow+'r level and are usually due to ba<l programming practice, or tack of attention, and fortltnatety, an interesting

porthm of them can be reveah.'+t automatically. Even if some ,)f these error'patterns could be specified using

adequate requirements fornutlisms and then enforced using the same logic-based approach iks ahow. _, we think

that this pr,)cedure ts too heav_' for this kind of errors, and that it is actually more _ipproprhlte to allow the

users attach designated efficient algorithms to .IP*X.
Error pattern runtime analgsis algorithms explore an execution trace and detect error potentials. The

important and appealing aspec: of these algorithms is that they find error potentials even in the case where

errors do not explicitety occur in the examined execution trace. They are usually very, fast and scalable, and

often catch the problems they are designed to catch, that is, the randomness in the choice of run does not

seem to imply a similar randomness in the analysis results. The trade off is that they have less coverage than

heavyweight formal methods and often suggest problems which, after a careful semantical analysis, turn out
not to be errors. Two example,+ of such algorithms focusing on concurrency errors have been implemented in

JP._X: the Eraser data race anMysis algorithm [17] originally developed by S. Savage, M. Burrows, G. Nelson,
P. Sobalvarro and T. Anderson; and a deadlock analysis algorithm based on analyzing lock cycles. Both these

algorithms have been previously implemented by Compaq in the Visual Threads tool [6] to work for C and

Ca+. Inspired by the Visual Threads tool, we also previously implemented the data race algorithm and a

v:trianr _-_f_he _-:ullock algorithm in Java PathFinder iT], rood;lying the l'wa \;i-tunl .Maehipo d-<crlhe++ ;n {!8].

Our conrrioutlon in error pattern analysis for Jean ls to marne these algorithms work for Jay,, u+ing byte code

instrumentation, to integrate them with logic based monitoring, and to allow advanced users to program new

error pattern analysis rules in e. flexible manner. The rest of this section shortly describes the data race and

deadlock detection algorithms.

4.1 Data Race Analys!is

We briefly describe here how easily data races can occur in concurrent programming and how Eraser [17] has

been implemented in JP.',X to work on Java programs. A data race occurs when two or more concurrent threads
access a shared variable, at least one access is a write, and the threads use no explicit mechanism to prevent the

accesses from being simultaneous. The Eraser algorithm detects data races by studying a single execution trace

of the monitored program, trying to conclude whether there exist valid runs where data races are possible. We

illustrate the data race analysis with the following example.

t. class Yalue{

3.

4. public s_nchronized _oid add(Va]ue v){z - z ÷ _.6eE();}

5.

6. public tat gst(){re_ttrn z;}

8
9 class Task extends Thread{

tO Value _l: Value v2;

it.

_2 public Task(Value _t,_alus _2)(

13 thisvl • vt; this.v2 • v2;

14. thzs.start()a

t8

t7 public void ru.n(){'*tadd('_2);}

19

20 ,:lass Hain{

2_ public statLC lord _a_n(Strxng[] args)(

22 Value _t - new Valae()i Value *2 * aeu /alue{);

,! 5

n*,w 71:_I sl. 12). '_._ rss,lL ,2 ill

]i,,, .h,+_. V._.'+.ue ++,rtratns .;+it ,nr,.,,_*'r v;ui+,l>h + :¢..t +vn_ ht,;ut/,'<l tt,'th_+,l]dd "hat i[),]a;+". :+:.!)v .t_l_lirl_ the

r'IHII_'N[let' .in,>r}i+'r Val.ue v;uia.[,h'. ;tn+l .m imsvnc!ir_mi×,',l mcth,.l get: riw.r +;illll)iV 4"+'riH'tl "+ _'h*' v+dIL+r ,)f :'¢. Task

i'-, +t rhr,,a,l ,las:.+: its instam'ps +t['+, -,r+u'te<l t,_+tth Phi' m*'th<,l a+tart which +'x " Ire% rill + isl'r ,If'fill.++'([tn,,rh(),l run.

F'*,) .,tl('h ra.sk:-+ ;,.r,' -+tmt+'.,L ill _a_.n. +m tv,',J instances ,>f the Value cla+Sh, vl. ;tIt(l 72 V',h,'n ,'-ttllllHt_ .IP \X wit.h.

rh,' Er;u+q'r ,)ptiiJn +witched ,)n. a <Ia.ta race potential is found, r+,potting that rh+, va.r'.a.bi+, +'<:in class Value is

a<'ces._e<[unpr<)tecte,[by tit+, tw) threads in lilies t and 6. rospectivet+v. The ymwrated wal.+ning mt,ssagp u_i'+es a

s<'f,nario un<h,r which <_+data ra,'e might appear+ summarizh+tg the fl)lh)v,,'ing.,,.One Task chrmul can ca.II the. add

ttteth<Jrt on the ,)hject vl. with tie parameter Value object ',,2. whose content is thus r++a,t via the uns+vn<:hronized

get: method. The other thread (an simultaneously do the same thing, i.e.. rail the add method <m ,+2. Therefore,

the content of v2 aright be a.cc,,sse<l :+imttltaneously by the two threads. Two data race warnings acre actually

emitted, since the the other task can perform the same behavior with .,t and ,_2 interchanged.

Roughly. the algorithm wet _s and is implemented in .IP._X _ follows. The instrumented byte code ,)f the

monitored program emits to the observer appropriate events when variables are read or updated, and when locks

are acquired or released as a resalt of executing .lava's synchronized statements or from calling/returning from

synchronized methods. The observer maintains two data structures: a thread map that keeps track of all the

locks owned by each thread, ant a variable map that associates with each (shared) variable the intersection of

the set of locks that has been (ommonly owned by all accessing threads in the past. If this set ever becomes

empty then a data race potential exists. More precisely, when a variable is accessed for the first time. the locks

owned by the accessing thread at that moment are stored in the variable's variable set. Subsequent accesses by

other threads causes the set to be refined to its intersection with the locks owned by those threads. An extra

state machine is also maintained for each variable to keep track of how many threads have accessed the variable

and how (read/write). This is u+ed to reduce the number of false warnings, such ,_ situations in which variables

at(_ ,dL._,liz ; b, a ._iLo_e ClntaLl withou, +,:KS _+.iCb. iS _t_.rC.] , a_'vcr:.i t.Lt,':: _ (,+,' ! _t ",:! '.u.e :': e.' tt

has been initialized (which is al_o safe).

Deadlock Detection

Deadlock potentials are hard to find in general, but there are classical deadlock situations which occur when

multiple threads take locks in d fferent order. For example, a deadlock will arise if a thread acquires a lock and

then. without releasing it, acquires another lock. while another thread first acquires the second lock and then

the first one. One can simply cr .'ate such a situation in the previous .lava example if one wrongly tries to repair

the data race by also defining the get method in line 6 as synchronized:

6. public synchronized in_ g_(){return x;}

It is clear now that the data race algorithm will indeed not return a warning anymore because the variable x

can no longer be accessed simultaneously from two threads. However. there is a deadlock potential now and

.IP+xX detects it..Mqre exactly, when running JPAX on the modified program, a [ock order problem is found

and an appropriate warning me._sage is issued summarizing the fact that two object instances of the Value class

are taken in a different order br the two Task threads. It also indicates the line numbers where the threads

may potentially dea(th)ck: line t where the get: method called from add may lock the second object. Notice

that this deadh)ck doesn't need it) appear m the examined trace m order for this warning to be issued. [n fact.

([<Mh)ck potentials might be re:)orted in general even if those deadlocks will never appear in amy execution of

the prugram. Any execution of ;he modified program above will cause a warning to b,, issued.

The runtime deadh)ck analy:_is algorithm is also intplemented in the observer and ,t needs onh" a subset of

the ewmts generated for the data ['ace algorithm, namely those related to lock acquires and releases ,)f locks that

r,.sutt from _execttting .lava's sy:_chronized statements or fr<)ni calling,, retl/rning from svllchronize<l methods.

[',,'<_ <Ltt,t str_lt't_lr_?s are rnainta nett ill the ohserver: a.s in the (hlta r;ice ,dgorithtn a _'hr,',,d ;,wp ke,'p-, track of

t}l+! hn'k:+ t,wm,<[by P;tl'h thr+'+L(], +vtli[(' ;L :_e<'ond _tata structure, at [or:],,: qraph, updates it _,ritiJh rh;tt acr'_tmulatt's ;ks

rt,++l,'s /tit the [_>t'ks tak('n I)v any rhrl'm[during, +ttl ex+,curi_m, the +,t:4+'s rt,cor, ting h+cktn< ,>r,l,.rs. h: +,t!,+++r w,+rds.

itn +'_tg, l* is illrro<[lll'+'<l fr<_ln st hxk t_) anoth+!r i,;t('h time whl'll at rhl+,;ul [hitt alrpat[_ ,_wrl._ th,' litst lock acquires

rh,. ,)rh,+r [f ,httin g th,, +,x,P<:uti_.n ,>f th,. pr(_gtanl this gritph b,!(unz,,s cyclic, then th,'r,' is .t ,l+.:ulhJ,k p,)r,'lttia[

II)

r,,l_,t,,<l t,, b+<k ,r,b,r_r,._ +_t Ph, + lw,,u.t.+m l!t> ++tml_b + .tl_,_rtthttt _+tn c<".,',+t m,,_+' ,,,nil)l,+:,: .h,.t,H<,,k +:.+t,'nttal:,

t_,.r',',,_'+.tt tl_i,n,, ell.tit P._.+,,P]lu,',l+l:. l.n lll1>t+rat_',l l<,r +,xaml>h' }-,v _tt+' ct++...,:.i,.tl _linlzn_ +)htl,.qqJilcr +_,':,:anti+l,'.

5 Conclusions

_+V,'h_t'+',' pr,'sertte_l J Px.N.. a. v;mtimt' v+,tifica.titm t_>,>l +m<h'r ,tm,-+,h)ptnent :it NASA Ames Res+,a.rch Center.

JP \X pr, Jvi<h,s ,m int++'grar,'<l,'+ virormtt,nt for inst.ru.ntertting Ja.va bvt.e +'ode t,) +'lttit, +vettt+ ,Ittrtn¢, ,,xe,vtttion to

;tn _)bst,rver. which p+trf,>rms t_,+) kimls of analysis: hJgic b++ed monitt)ring+ checking events a_,ainst high level

requirements spe<:ifications, and error pattern analysis, searching fl)r tow level prograrnnting errors. [t has been

shown how the <we kinds ,)f verification can be combined by viewing both kimTs as rules within an oxtensible set

of rtt[es. It has in particular been demonstrated how the Maude rewriting logic can be used to define new logics
fl)r runtime verification in aver; flexible manner, and how the Mamle inference engine can be used to perform

the monitoring itself. In the case where optimal efficiency is required, we have shown that optimal automata

can be generated from filture time and past time LTL. Finally', two known error pattern detection algorithms.
one for data races and one for deadlocks, have been implemented to work on Java.

The project as described above mainly focuses on applying the tool during testing of a software application.

Hence, with this perspective the goat is to smoothly combine testing and formal methods, while avoiding some of

the pitfalls from ad hoc testing and the complexity of full-blown theorem proving and model checking. However,

an at least equally interesting application of runtime verification is to apply it during operation, and influence

the program behavior in case requirements get violated. Our future research will focus on this aspect. In

general, integration in the over_dl NASA Ames automated software engineering effort is highlighted, and here

two crucial issues are: how can testing be made more formal, and how can missions be made safer in the face

or errors occurring during flight that survived tests.
Of other future work can be mentioned that we will experiment with new logics in Maude more appropriate

m+ ni*,,,i:, _: :t LTL, =_t(:l , _- ,rval ;_,_,! :+_al ti:._e ',_gies and "?,'_ t+,,tat: qs TL-,, latr,,r :Hews +o cho_"

original designs (via state charts and/or sequence diagrams) against "real" execution traces. Future work on

error pattern analysis will try t,) develop new algorithms for detecting other kinds of concurrency errors than

data races and deadlocks, and c,f course to try to improve existing algorithms. We will also study completely

new functionalities of the system, such as guided execution via code instrumentation to explore more of the

possible interleavings of a non-deterministic concurrent program during testing. Dynamic program visualization

is also a future subject, where we regard a visualization package as just another rule in the observer. A more

user friendly interface, both graphical and fimctional, will be provided, and finally the tool will be evaluated

against NASA safety critical applications.

References

[1] E. M. Clarke. O. Grumberg and D. A. Peled. Model Checking. The MIT Press, Cambridge, Massachusetts.
1999.

[2] M. Clavel, F. ,I. DurS, n, S. Eker. P. Lincoln, N. Marti-Oliet, .l. Meseguer, and .I.F. Quesada. The Maude
system. In Proceedings of the iOth Inter'national Conference on Rewriting Techmques and Applications

(RTA-99), volume 16.31 of LNCS, pages 240-243, Trento, [taly..Iulv 1999. Springer-Verlag. System de-

scription.

[.31 S. Cohen..ltrek. Compaq,

ht:tp ://www. compaq, com/j ava/download/j trek.

[4] D. Drusinsky. The Tentpora Rover and the ATG Rover In SP[.V Mo,lel Chef:king ,£,,,1 Softw,ue _rifi,'ation.

vohmte tssa ,,f LN('S. page_ 32.3 330. Springer. 2{)()1).

:5] B gis<her. T. Pre:-;sbttt'gt,r G. R+oSI£. itllll .]. St'hlIHLa!.[II1. "['_l.,r .\UtUBaV,'S Pr<_<ra,n S'.:trh,'sis System -

Sv-;r,'tn Description. [n ,_+qmtw.s+um on tit; [rttt'qrat,on ,,f .>'+/rnbohc (',_mp,atatu,n ,,nd .II,'_ han,zcd t2ert._ont*,g
(('.1LCULEMUS 2001). St., n,£+ [talq, .lun,' 201)l.

II

r.l;

i9!

it<)/

[tl]

[12]

[ta]

_t4j

[1.5j

[16t

[17]

[lSj

{191

/ ll.u'r,_w [¢IUVEZn_'('h4'_'kt I_, ,,f ',,l,flttthr,,;ut,',i .\pl)(iI_itfi¢ltl, with _. i.,tl,_.l ['hl,.alt>. Ill .5'l'[?f 2l,,d,'/ +7.'c/_mq

In. [la,.,'ilm<£ ['.-.m_, I_llnritn,' .%naLv.q_ r,, ¢;,,_t+, Nl,)_h,l <'h_.<km_, ,f .I,t,.a I'r<,.,_.'r;,m>. [n 5P/.V M,,,L, l , 7.'ck_..q

a,rid ,5'of/+w.,r,: L;,vT,+/icatmn,. "++)[Itlm' t,'_,%'_*_(L+V(+'.b'.lJag_+s 217, 261. _pl'ttt_<W, 2flllll

K Ha,,'+qlmd..\l. Lowry, ;+n<l .I. Penix. F<)rnta.l .X,.naJ.y*sis+Jr a Space (_'rah, (',m_r+)ib,r usulg SPIN In

Prm'eedtnq,'i of the 4tit ._P[?+] workshop. P;tris. France, Nov,+nlb,,r 1998. B) appear in [EEE _r;tns;t<'tilJrls ,)f

+<JRw;+,+r<++' l_ngineering

K. Havehmd and T. Pressburger. Model Checking .lava Programs +lsmg+ .lava P;+thFinder. [nternatwmd
lour, al on Software Tools for Technoloqy Transfer, 2(4):366-38!...\[Sril 201)1). Special issue ,ff STTT

containing selected submissions to the 4th SPIN workshop+ Paris. France, t998.

K. Havehmd and G. Ro_u. Testing Linear Temporal Logic Formulae on Finite E.ve<:ution Traces. RIACS

Technical report, http ://ase. are. nasa. gov/pax, November 2000.

K. Havelund and G. Ro_u. Java PathExplorer - A Runtime Verification Tool. In Proceedings of the

6th International Symposiu,n on Artificial Intelligence, Robotics and A utomatwn in Space (i-SAIRAS'O1),

Montreal, Canada, June 2001.

.l. Hsiang. Refutational Theorem Proving using Term Rewriting Systems. PhD thesis, University of Illinois
at Champaign-Urbana, 1981.

I. Lee, S. Kannan, M. Kim, O. Sokolsky, and M. Viswanathan. Runtime Assurance Based on Formal Speci-

fications. In Proceedings of _,he International Conference on Parallel and Distributed Processing Techniques

and Applications, 1999.

M. Lowry, A. ghi£put, "f. t'ressburger, J.. Cnderwood, R. ,¢aldmgeL, aua M. buckd. .\tt,pl,,,_n: .auto-

matic Programming for the NAIF Toolkit. In NASA Science Information Systems Newsletter, volume 31,
February 1994.

A. Pnueli. The temporal tcgic of programs. In Proceedings of the 13th IEEE Symposium on Foundations

of Computer Science, pages 46-77, 1977.

G. Ro_u and K. Havelund. Synthesizing Dynamic Programming Algorithms from Linear Temporal Logic

Formulae. RIACS Technical report, help ://ase. arc. nasa. gov/pax. January 2001.

S. Savage, M. Burrows, G..Nelson, P. Sobalvarro. and T. Anderson. Eraser: A Dynamic Data Race Detector

for Multithreaded Program +..4 CM Transactions on Computer Systems. 15(4) :391-4 t 1, November 1997.

W. Visser, K. EIavelund, G Brat, and S. Park. Model Checking Programs. In Proceedings of,4SE_O00:

The 15th [EEE International Conference on Automated Software Engineering. IEEE CS Press. September
2001). .'_

.1. Whittle and .I. Schumann. Generating Statechart Designs From Scenarios. In btternational Conference
on Software Engineemn 9 (IUSE 2000), Limerick, Ireland, June 2000.

12

